Subject: Leaving Certificate Maths Teacher: Mr Murphy Lesson 18: <u>Calculus III</u>

18.1 Learning Intentions

After this week's lesson you will be able to;

- Calculate the equation of a circle
- Extract the centre and radius from a circle x°+y'+2gx+2fy+c=0
- · Establish the location of a point relative to the circle
- · Describe other types of centres Find the P.O.I. of a circle and a line
- · Calculate the equation of a tangent to a circle
- Prove that circles are touching

18.2 Specification

2.2 Co-ordinate geometry	-	use slopes to show that two lines are	-	solve problems involving
		parallel		• the perpendicular distance from a
		perpendicular		point to a line
	-	recognise the fact that the relationship		 the angle between two lines
		ax + by + c = 0 is linear	-	divide a line segment internally in a
	-	solve problems involving slopes of		given ratio m: n
		lines	-	recognise that $x^2+y^2+2gx+2fy+c=0$
	-	calculate the area of a triangle		represents the relationship between
	-	recognise that $(x-h)^2 + (y-k)^2 = r^2$		the x and y co-ordinates of points on
		represents the relationship between		a circle with centre (-g,-f) and radius r
		the x and y co-ordinates of points on a		where $r = \sqrt{(g^2 + f^2 - C)}$
		circle with centre (h , k) and radius r	-	solve problems involving a line and a
	-	solve problems involving a line and a		circle
		circle with centre (0, 0)		

18.3 Chief Examiner's Report

A	4	18.6	75	2	Co-ordinate geometry - circle
	1			1	1

18.4 Equation of teh Circle

using the distance formula and the given points, establish the distance between the two points.

$$r^{2} = (x - h)^{2} + (y - k)^{2}$$

Again, what you have done is establish the formula for calculaating the equation of a circle with a non-zero cnetre and radius r. So, if we take a picture of a circle see if you can extract the important information from it a establish the equation of this circle.

18.5 Alternative Version of the Equation

Sometimes the equation can be given in the following form:

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

Where the centre is (-g, -f) and the radius:

$$r = \sqrt{g^2 + f^2 - c}$$

So, in extracting the centre from this form of equation we half the coefficients of both the x and y and change their signs.

18.6 Points Location Relative to a Circle

r < |AC|

r = |AC|

18.7 Other Centres in Geometry

18.8 Equation of a Tangent

With a tangent and a circle, we can have two situations.

Point on the circle

Point outside the circle

Points on the Cicle:

Points outside the circle $x^2 + y^2 - 12x - 10y + 51 = 0$:

18.9 Circle in Contact

Internal: Distance between the two ccentres is equal to the difference in teh two radii.

External: Distance between the two centres is equal to the sum of the two radii.

Question:

The circles c_1 and c_2 touch externally as shown.

(a) Complete the following table:

Circle	Centre	Radius	Equation
c_1	(-3, -2)	2	
c_2			$x^2 + y^2 - 2x - 2y - 7 = 0$

(b) (i) Find the co-ordinates of the point of contact of c_1 and c_2 .

After this week's lesson you will be able to;

- · Calculate the equation of a circle
- Extract the centre and radius from a circle x2+3/2-1-2gx+2fy+c=0
- · Establish the location of a point relative to the circle
- Describe other types of centres
- Find the P.O.I. of a circle and a line
- · Calculate the equation of a tangent to a circle
- Prove that circles are touching

18.11 Homework Task

Two circles s and c touch internally at B, as shown.

(a) The equation of the circle s is

 $(x - 1)^2 + (y + 6)^2 = 360.$

Write down the co-ordinates of the centre of s.

Centre: ____

Write down the radius of s in the form $a\sqrt{10}$, where $a \in \mathbb{N}$.

Radius:

(b) (i) The point K is the centre of circle c.

The radius of c is one-third the radius of s.

The co-ordinates of B are (7, 12).

Find the co-ordinates of K.

(ii) Find teh equation of c.

(c) Find the equation of the common tangent at *B*. Give your answer in the form ax + by + c = 0, where $a, b, c \in \mathbb{Z}$.

18.12 Solutions to 17.10

Parts of the graphs of the functions h(x) = x and $k(x) = x^3$, $x \in \mathbb{R}$, are shown in the diagram below.

(a) Find the co-ordinates of the points of intersection of the graphs of the two funcations.

$$x^{3} = x$$
$$x^{3} - x = 0$$
$$x(x^{2} - 1) = 0$$
$$x(x - 1)(x + 1) = 0$$

x = 0 or x = -1 or x = 1Sub these into either y= to get the y coordinate

$$P.O.I. = (-1, -1), (0, 0), (1, 1)$$

(b) i. Find the total ara enclosed between the graphs of the two functions.

$$2\int_{0}^{1} x - x^{3} dx$$

= $2\left[\frac{x^{2}}{2} - \frac{x^{4}}{4}\right]_{0}^{1}$
= $2\left(\left(\frac{1^{2}}{2} - \frac{1^{4}}{4}\right) - \left(\frac{0^{2}}{2} - \frac{0^{4}}{4}\right)\right)$
 $\frac{1}{2}$ sq. units

ii. On the diagram on teh previous page, using symmetry or otherwise, draw the graph of K⁻¹, the inverse function of K.

